首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   88020篇
  免费   6544篇
  国内免费   2999篇
电工技术   4467篇
技术理论   10篇
综合类   4812篇
化学工业   15315篇
金属工艺   4668篇
机械仪表   5450篇
建筑科学   7218篇
矿业工程   2079篇
能源动力   2578篇
轻工业   5044篇
水利工程   1501篇
石油天然气   4747篇
武器工业   526篇
无线电   10606篇
一般工业技术   11432篇
冶金工业   4702篇
原子能技术   866篇
自动化技术   11542篇
  2024年   145篇
  2023年   1288篇
  2022年   1800篇
  2021年   3088篇
  2020年   2406篇
  2019年   2074篇
  2018年   2325篇
  2017年   2579篇
  2016年   2417篇
  2015年   3067篇
  2014年   4160篇
  2013年   5238篇
  2012年   5466篇
  2011年   5734篇
  2010年   5119篇
  2009年   4896篇
  2008年   4647篇
  2007年   4550篇
  2006年   4804篇
  2005年   4240篇
  2004年   2878篇
  2003年   2577篇
  2002年   2250篇
  2001年   2050篇
  2000年   2279篇
  1999年   2581篇
  1998年   2374篇
  1997年   1886篇
  1996年   1773篇
  1995年   1484篇
  1994年   1248篇
  1993年   905篇
  1992年   671篇
  1991年   550篇
  1990年   409篇
  1989年   381篇
  1988年   318篇
  1987年   169篇
  1986年   158篇
  1985年   103篇
  1984年   92篇
  1983年   60篇
  1982年   59篇
  1981年   51篇
  1980年   38篇
  1979年   32篇
  1978年   13篇
  1977年   33篇
  1976年   16篇
  1975年   15篇
排序方式: 共有10000条查询结果,搜索用时 21 毫秒
41.
42.
It is believed that promoting the fraction of ferroelectric orthorhombic phase (o-phase) through O-poor growth conditions can increase the spontaneous polarization of HfO2 and (Hf,Zr)O2 thin films. However, the first-principles calculations show that the growth may be limited by the easy formation of point defects in the orthorhombic and tetragonal phases of HfO2, ZrO2, and (Hf,Zr)O2. Their dominant defects, O interstitial (Oi) under O-rich conditions and O vacancy (VO) under O-poor condition, have low formation energies and quite high density (1016–1019 cm−3 for 800–1400 K growth temperature). Especially, Oi has negative formation energy in tetragonal HfO2 under O-rich condition, causing non-stoichiometry and limiting the crystalline-seed formation during o-phase growth. High-density defects can cause disordering of dipole moments and increase leakage current, both diminishing the polarization. These results explain the experimental puzzle that the measured polarization is much lower than the ideal value even in O-poor thin films and highlight that controlling defects is as important as promoting the o-phase fraction for enhancing ferroelectricity. The O-intermediate condition (average of O-rich and O-poor conditions) and low growth temperature are proposed for fabricating HfO2 and (Hf,Zr)O2 with fewer defects, lower leakage current, and stronger ferroelectricity, which challenges the belief that O-poor condition is optimal.  相似文献   
43.
A shale gas gathering and transportation pipeline in a good block in Sichuan Province started leaking after less than a year of operation. To investigate the causes of corrosion of the sulfate-reducing bacteria (SRB), optical microscopy, scanning electron microscopy, and X-ray diffraction were used to analyze the corrosion and perforation of the shale gas surface pipeline in conjunction with bacterial corrosion simulation experiments. The results showed that the pipeline material (L360N) conformed to the requirements of the American Petroleum Institute 5 L standard and that extracellular polymeric substances were present in the corrosion pits. The corrosion products mainly included FeCO3, FeS, CaCO3, MgCO3, and Fe mineralization. At 40°C, the uniform corrosion rate of L360N in the simulation experiment was 0.234 mm/a, and the local corrosion rate was 0.458 mm/a. SRB, saprophytes, and iron bacteria were detected in the on-site water medium and corrosion products, indicating that the main causes of shale gas pipeline corrosion are bacterial and CO2 corrosion.  相似文献   
44.
Graphene-based heterostructure composite is a new type of advanced sensing material that includes composites of graphene with noble metals/metal oxides/metal sulfides/polymers and organic ligands. Exerting the synergistic effect of graphene and noble metals/metal oxides/metal sulfides/polymers and organic ligands is a new way to design advanced gas sensors for nitrogen-containing gas species including NH3 and NO2 to solve the problems such as poor stability, high working temperature, poor recovery, and poor selectivity. Different fabrication methods of graphene-based heterostructure composite are extensively studied, enabling massive progress in developing chemiresistive-type sensors for detecting the nitrogen-containing gas species. With the components of noble metals/metal oxides/metal sulfides/polymers and organic ligands which are composited with graphene, each material has its attractive and unique electrical properties. Consequently, the corresponding composite formed with graphene has different sensing characteristics. Furthermore, working ambient gas and response type can affect gas-sensitive characteristic parameters of graphene-based heterostructure composite sensing materials. Moreover, it requires particular attention in studying gas sensing mechanism of graphene-based heterostructure composite sensing materials for nitrogen-containing gas species. This review focuses on related scientific issues such as material synthesis methods, sensing performance, and gas sensing mechanism to discuss the technical challenges and several perspectives.  相似文献   
45.
46.
Oil, accounting for 45% of almonds, is easily oxidised and can further induce the protein oxidation to reduce their quality. Structure and physicochemical properties of amandin, the main water-soluble protein in almonds, inducing oxidation by malondialdehyde (MDA) were investigated. The results showed that the content of carbonyl group increased from 5.23 to 33.25 nmol mg−1 of protein with the increase in MDA concentration (P < 0.05). However, the sulphydryl content, surface hydrophobicity, particle size and the absolute value of ζ-potential first increased and then decreased. Fourier-transformed infrared spectroscopy (FT-IR) confirmed that the structure of amandin changed from order to disorder. Fluorescence spectroscopic analysis revealed that mild oxidation (0–0.1 mmol L−1 MDA) exposed hydrophobic groups of the protein. Sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) suggested that protein oxidation promoted crosslinking between protein molecules. Furthermore, protein oxidation markedly declined the total amino acid content of amandin (P < 0.05). In conclusion, MDA oxidation changed the structure and amino acid content of amandin, and caused the protein aggregate and crosslink through hydrophobic interaction and electrostatic interaction.  相似文献   
47.
Mammalian gelatin is extensively utilized in the food industry because of its physicochemical properties. However, its usage is restricted and essentially prohibited for religious people. Fish gelatin is a promising alternative with no religious and social restrictions. The desirable properties of fish gelatin can be significantly improved by various methods, such as the addition of active compounds, enzymes, and natural crosslinking agents (e.g., plant phenolics and genipin), and nonthermal physical treatments (e.g., ionizing radiation and high pressure). The aim of this study was to explore whether the properties of fish gelatin (gel strength, melting or gelling temperature, odor, viscosity, sensory properties, film-forming ability, etc.) could be improved to make it comparable to mammalian gelatin. The structure and properties of gelatins obtained from mammalian and fish sources are summarized. Moreover, the modification methods used to ameliorate the properties of fish gelatin, including rheological (gelling temperature from 13–19°C to 23–25°C), physicochemical (gel strengths from ∼200 to 250 g), and thermal properties (melting points from ∼25 to 30°C), are comprehensively discussed. The relevant literature reviewed and the technological advancements in the industry can propel the development of fish gelatin as a potential alternative to mammalian gelatin, thereby expanding its competitive market share with increasing utility.  相似文献   
48.
通过显微组织观察与力学性能测试研究了氮含量(0.08%~0.22%,质量分数)对HPD-1双相不锈钢硬度、拉伸性能、低温冲击性能及疲劳性能的影响。结果表明,氮含量变化可显著影响试验钢γ/α相比例,当氮含量由0.08%升高到0.22%,γ相含量由38.1%提高至56.5%。α相的硬度由273 HV10提高到343 HV10,γ相的硬度由238 HV10提高到299 HV10,试验钢强度明显提升。氮元素对两相比例和奥氏体相韧性的双重影响导致试验钢低温冲击性能呈先上升后下降的趋势;更高的氮含量抑制疲劳裂纹萌生与拓展,是影响HPD-1双相不锈钢室温疲劳性能的主要因素。撕裂棱是疲劳断口的显著特征。  相似文献   
49.
In order to ameliorate the gel quality of Dosidicus gigas surimi, the effects of laver powder on gel properties, rheological properties, and water-holding capacity (WHC) were investigated. Results indicated that the addition of laver powder could significantly increase the hardness, chewiness, and breaking force of surimi gels. However, the texture indexes and gel strength began to decline when additional amount exceeded 0.6%. Rheological results demonstrated that the addition of laver powder increased the storage modulus (G′) and viscosity of surimi, prolonged protein denaturation temperature in surimi gels. Moreover, the WHC of surimi gel was improved with the increase of laver powder. Further analyses in low-field nuclear magnetic resonance revealed that laver powder could shorten the transverse relaxation time, enhanced the combination with water, and altered the distribution of different water categories. The proportion of bound water and immobilized water reached its maximum and minimum at 0.6% of laver powder, respectively. Correlation analyses showed that WHC of surimi gel was negatively correlated well with the proportion of loose-bound water, but positively correlated with the strong-bound water and free water. In conclusion, the results supported that 0.6% was the optimal additional amount of laver powder for the squid-based surimi production based on the current ingredients of surimi products.  相似文献   
50.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号